

Abstract—This article is focused on some of spoken dialogue
management techniques, in particular on those widely well
known as grammar-based ones. Furthermore, as this article
shows, even dealing with such more simple dialogue
management techniques, the resulting dialogue manager can be
capable to cope with relatively advanced phenomenons, as for
example the cross-references to historically spoken entities. This
article is divided into two parts. In the first one, all three
techniques mentioned above are overviewed and compared to
each other. The rest of the article describes a dialogue manager,
currently being developed at our department as a part of an
experimental navigation system. Especially, it is focused on the
crucial propositions and background ideas like the structure of
manager's internal model of a world (static and dynamic frames
and bindings between them) and structure of a dialogue history
(history of computer and user's uterances and spoken entities).

I.INTRODUCTION

IALOGUE management is conceived in machine
reasoning, in particular, finding the best machine

utterance as a response to previous user's ones and moreover
keeping the discussed task in consistency with domain
possibilities. A wide variety of methods has been evolved,
embodying and regarding different complexity and usability
as well. These methods are commonly divided in several
groups and even if the division is not standardized in any
way, it always involves grammar- and plan-based methods
and methods for collaboration [1]. The rest of this article is
focused purely on the group mentioned very first. Our
explicit research aim is to develop a portable mixed-initiative
domain-independent (multimodal) dialogue manager coming
along with a user-friendly domain dialogue editor. The
manager will be a part of a virtual navigation system. Our
motivation for this domain is the elimination (or at least
repression) of the driver's need to look at the graphical
display of its car navigation during the ride (trafic safety
should not be threatened). However, in order to test the
manager capabilities properly, it is planned to employ it still
in another domain – the train timetable. But this second
dialogue system is currently not our primar focus – it is the
manager accomplishment and its successful application to
car navigation domain.

D

In the following, we shortly describe grammar-based
management approaches, their advantages as well as
drawbacks and, as next, we move the attention to the
approach of our dialogue manager, its overview and detailed
describtions of currently existing capabilities. The

 T.Nestorovič, Department Of Applied Sciences, University Of West
Bohemia, Pilsen, Czech Republic (nestorov@kiv.zcu.cz)

explanation is augmented with some examples for better
understanding and demonstration as well.

II.GRAMMAR-BASED MANAGEMENT

Grammar-based dialogue management group contains a
lot of approaches of different complexity, among which one
can count in the state-based methods (sometimes also refered
to as finite state-based) and all of frame-based variations
(most generally, those employing flat and hierarchically
nested frames). According to [2], all approaches involved
may be considered as equivalent, and, moreover,
trasformable to a finite state automaton using Schank's
planning script.

A.Finite State-Based Approach
This approach is based on existing formalism – a finite

state automaton. Therefore, it is not unusually refered to as a
transitional network approach [3], because it can be thought
of as an weighted directed graph, where every state (node)
represents a system utterance. The transition to another state
(node) is conditioned with a corresponding user's utterance
matching one of edge values coming out from a current state.
From a developer's point of view, a lot of integrated
environments have been evolved – a very well known one of
them is the Rapid Application Developer, a part of CSLU
Toolkit [4], [5], which enables the dialogue to be created
using simply dragging and dropping icons on the screen.

An essential advantage of this kind of management is its
simplicity and a highly straightforward design capability.
However, on the other hand, there are standing attributes like
the lack of flexibility and hard applicability to other domains
[1]-[3], [6]. Additionally, trying to get over the inflexibility,
a state explosion may arise. A developer also encounters an
unpleasant situation when getting a confirmation process
involved – generally, every information needs to be
confirmed by the user separately. Moreover, he is not given
the possibility to correct himself (after a misrecognized user
input, the system generally moves to another state). As a
solution to this pitfall, a special key-word, for example
"Back", may be considered – then, corrections can be
achieved using an "undo" operation [7].

Regarding its shadow sites, the finite state approach has a
very constrained area of applicability. According to [8], it is
best suited to "applications in which the interaction is well-
defined and can be structured as a sequential form-filling
task or a tree, preferably of yes/no or short answer
questions."

Grammar-Based Dialogue Management Techniques

Tomáš Nestorovič

9th International PhD Workshop on Systems and Control: Young Generation Viewpoint 1. - 3. October 2008, Izola, Slovenia

B.Frame-Based Approach
As seen above, the pure state-based management is very

restrictive one because of all its disadvantages coming along.
The frame-based management reflects most of them and
provides solutions. Here, the basic construction asset is a
frame (sometimes also refered to as entity, topic or template,
etc.) consisting of a set of slots. For controlling the dialogue
flow, the system needs to select one of empty (generally
unsatisfactorily filled) slots. For example, in VoiceXML, a
XML-based language for creating voice response
application, such algorithm is called the Form Interpretation
Algorithm (FIA) [9]. To get the user aware of what slot the
system has chosen a prompt attached to that slot needs to be
sent to an output module. Therefore, the purpose of frames is
to cumulate the information gathered from the user.
Traditionally, a slot is assigned a set of event handlers
instructing what actions the system needs to carry out when
certain situations arise during the conversation. Back in
VoiceXML, such events are "no-match" (the user's response
is entirely out of acceptable utterances) or "no-input" (the
user kept silent for a certain period of time).

Employing the frame-based management, the dialogue
becomes more flexible in comparison to the previous
approach because the possibility to take initiative during the
discussion is held not only by the system but, instead, it is
distributed between both partners [8] – the so-called mixed
initiative. The scenario of mixed initiative dialogues is nearly
the same in every case. At the beginning, the user makes a
suggestion what he/she would like to talk about. However, a
complete demand is provided very seldom or is not
recognized properly, which implies the reason why the
system takes the initiative and asks the user additional
questions to obtain the missing necessary information.

A wide variety of frame types has been developed. The
original idea of flat frames (VoiceXML) has been overcome
with hierarchical (or nested) frames. Moreover, another case-
based approaches emerged, for all of them let us remind the
E-Forms present in WHEELS [10].

According to [3], the frame-based management is often
involved in information retrieval systems – traveling, finan-
cial or timetable services. Still, because of simplicity, its
pure version cannot be used in more complicated tasks [11].

III.DIALOGUE MANAGER APPROACH DESCRIBTION

The dialogue manager being currently developed at our
department derives from its previous multimodal version
[12] employing pure flat frames. Conceptually, this previous
version was evaluated to have context and history as weakest
parts, too much simple approach was the reason. The
manager was applied in an experimental car navigation
system domain, as well as the upcoming will. The reason
why we have decided to remake it is that it did not seem to
provide algorithms strong enough for a generally wider
spectrum of collaborative tasks – a language model of a flat

frame-based system cannot provide a necessary flexibility,
because the user to be able to refer a desired system frame
(task) must utter a whole particular phrase, which happens
seldom, implying in the final, the novice user to have to
follow exactly predefined utterances. This way, the
conversation reduces to state-based model when going
through the menus. However, more common is an
incremental demand (as our observations show), where users
rather than to express the whole command, try to explore the
system step by step, usually beginning with a sentence
containing a key verb (“navigate”, for instance).

Currently, the new dialogue manager can cope with
disambiguation and history creation and exploitation.
However, it still lacks some core functionalities (as for
example confirmations, corrections and subdialogues
dealing). These will be accomplished very soon, however,
we have firstly focused our attention to the modules where
the ancestor version of the manager seemed to have
drawbacks – the context and the history modules. Moreover,
instead of flat, hierarchical (nested) frames were necessary
the dialogue manager to be able to deal with, enabling the
users' incremental exploration.

Fig. 1. The manager overall structure consists of three modules, the fourth
is still to be accomplished.

The manager current overall structure (fig. 1) consists of
three modules:

• Context – a module maintaining a current model of
a dialogue (for detailed describtion see below),

• History – a “memory” of a dialogue (see below),
• Core – main module directing both of previous

ones, and interpreting current model of a dialogue.
The fourth, Prompt Planner, is still to be accomplished,

and should enable the manager to produce more natural
prompts employing common human language phenomenons,
as for example ellipsis.

The manager repeatedly carries out three tasks: 1) as soon
as user's utterance semantic information is retrieved, it
undertakes integration procedure (through History module
into Context), 2) when integrated, the Core initiates
interpretation of current state of Context resulting in a
system response, augmented with a response semantic
information, 3) finally, the system response semantic

Core

History
Context

Prompt
Planner

ASR

TTS

Semantic information flow

System response flow

9th International PhD Workshop on Systems and Control: Young Generation Viewpoint 1. - 3. October 2008, Izola, Slovenia

information is integrated the same way as the user's one. This
is manager's load in brief, more detailed describtion follows.

A.Context property
This section is rather than purely on the Context module

focused on the context approach as a whole.
As mentioned above, the context deals with hierarchical

frames. This approach was chosen not only because it seems
to be a promising way of frame-based management [10], but
additionally, because it enables the users to explore the
system incrementally, thus allows more natural information
representation in comparison to flat counterparts.

For the upcoming text, let us stick to the navigation
domain and consider a hypothetic context containing a
situation, where the driver wants to delete at once two
addresses and one number stored under different shortcuts in
the system (fig. 2). To make it possible, several types of
frames must be defined – MainLoop (a top-frame constantly
present in the system to ask the driver to begin a task),
Delete (a frame asking for and maintaining what should be
deleted and executing this demand making changes in the
domain world), TripGoal and TelNumber (two frames asking
for and maintaining system shortcuts), and Shortcut (a frame
containing the informartion about a particular predefined
system shortcut). According to the situation described, the
TelNumber frame in the figure above consists of two
Shortcut subframes. The frame-subframe relation is
expressed using directed bindings. For the purpose of
History module implementation simplicity, the context is
made up of bindings only, implying every frame to be
represented in it as a reflexive binding. The context contains
a given frame if it contains its reflexive binding. In our
approach, we define two general types of frames – dynamic
and static, respectively. The first mentioned ones are
expected to be used as information containers only
(TripGoal, TelNumber and Shortcut), whereas the second
ones are intended to be key frames and hold additional
actions as well (MainLoop and Delete). Additionally, every
frame contains a slot counter and a message queue, both are
processed during the context interpretation.

In the context interpretation, it is necessary to carry out
two essential operations: firstly, find an unsatisfactorily filled
slot and evaluate its prompt, and secondly, integrate an
incoming user's response semantic information. The finding

problem is resolved very easily. Every frame is in the design
phase assigned a priority (the nested a frame is, the lower
priority it holds). The manager begins to process the highly
prioritized frame queue containing a message. If a
FRAME_INTERPRET message is popped, a slot addressed
by the slot counter is evaluated. If it misses a value, then
unsatisfactorily filled slot has been found and appropriate
prompt is formulated. The same situation arises if it misses a
subframe. If it contains a series of subframes, the searching
problem is recursively transmitted to them. Finally, even if
the recursion did not find any slot and the message queue is
empty, then the second highly prioritized frame undertakes
this procedure. The manager ends the interpretation, if there
is no frame with non-empty queue.

To demonstrate our integration problem resolution, let us
focus back to the hypothetic situation of deleting some
shortcuts. Now, consider that as soon as the system asks for
deletion confirmation, the user augments his demand with
"And the Cottage shortcut too, please" resulting in the ASR
(Automatic Speech Recognition) to produce the following
semantics:

Fig. 3. The semantics for the sentence “And the Cottage shortcut too“.

First in the integration process, the manager tries to
transform the provided semantic informartion into a set of
integration trees covering all meaningful hierarchical
combinations of frames (currently existing in the context as
well as the non-existing ones, i.e. entirely new). The process
describtion is expressed in the following steps:

1. For every elementary semantic information, find
and maintain all possible paths through the frame
hierarchy. Here, the frame Shortcut containing
“Cottage” can be located either as a TripGoal
subframe, or TelNumber subframe, i.e. two path are
found.

2. Merge groups of paths starting and ending in
identical frames into one path. Here, both path start
and end in identical frames, and are, therefore,
merged in one, still regarding the choice between
TripGoal and TelNumber.

3. Combine paths into a set of trees. Evaluate them
according to different aspects of their nodes, like
whether a particular frame is new or currently
present in the context, static or dynamic, or whether
the binding between related nodes is a part of a path
to a slot, which prompt has been formulated as last,
etc. Here, only one path exists, therefore only one
tree is produced, and its evaluation is needless –
there is no other one to compare it with (next step).

concept: C_REQUEST
subconcepts: concept: C_SHORTCUT

value: "COTTAGE"

Fig. 2. A hypothetic context contains static frames MainLoop and Delete,
dynamic frames TripGoal and TelNumber and three instances of another
dynamic frame Shortcut containing different values.

[...slots...]

Delete
[...slots...]

TripGoal
[...slots...]

TelNumber
[...slots...]

MainLoop
>Neighbour<

Shortcut

>Service<

Shortcut

>Hospital<

Shortcut

Static frame

Dynamic frame

Binding

Part of context

9th International PhD Workshop on Systems and Control: Young Generation Viewpoint 1. - 3. October 2008, Izola, Slovenia

Fig. 4. The integration tree of user's sentence “And the Cottage shortcut
too, please”. Its third node is made up of two subtrees.

4. Select a tree having the highest evaluation. If there
exist more than one, select the first of them (more
sophistical strategy is still to be devised).

For our semantic information, this process results in the
integration tree depicted in figure 4.

This tree now dictates the integration method. Starting in
its root, the MainLoop and Delete frames – both currently
exist in the context, therefore, neither of them will be
recreated. In contrast, although three Shortcut frames exist
there, a fourth will be created because it holds an unique
value. However, its superframe (“third” node) is ambiguous
in the tree, reflecting the location of ambiguity in user's
utterance – as mentioned above, the shortcut Cottage may be
conceived either as a trip goal shortcut, or a telephone
number shortcut. Thus, the dialogue manager formulates a
clarification question and binds the new Shortcut frame to an
internal auxiliary static Disambiguation frame. As soon as
the user utters a resolution (for example “I ment a trip goal”),
the Disambiguation frame has gathered all necessary
information and interconnects both frames. As next, it
disappears from the context.

B.History property
In this section, the history approach will be presented –

again instead of pure History module describtion. History
structure (inspired by [13]) was designed with respect to an
easy implementation of manager upcoming extensions (see
"Future work" at the end).

Back in the context, we define a frame to be "sealed" if
the following applies at once:

• the frame has filled and confirmed slot value (if
any),

• every slot in the frame has acceptable amount of
sealed subframes bound,

Fig. 5. The history structure consists of references to particular entities
implying from user's or manager utterances.

• bindings between the frame and all its sealed
subframes are confirmed,

• there are no unsealed subframes bound.
We perceive the dialogue history as a storage of sealed

frames, shortly entities. For example, one entity is a set of
TelNumber and both Shortcut frames augmented with all
interlaying bindings (see fig. 2). As mentioned above, the
context is made up of bindings only, benefiting in History
module implementation simplicity. Here, the simplicity lies
in entities made up of bindings only, as well (see forth).

Every time the Context module integrates incoming
semantic information, the History module starts searching for
newly emerged entities. If any found, it stores them ordered
from the concrete to the general ones (from Shortcut to
MainLoop, for example) in a new structure called utterance,
which is initially empty. For all entities which it holds
applies, that they imply from a particular user's utterance
(which may be a confirmation, for example).

The inverse operation, reading from the history, occures
implicitly, which states for as soon as the ASR module
provides a semantic information – any. The semantic
information is transmitted to the History module. The
History module treats it as an entity description and tries to
find a match. If unsuccessfully, it sequentially begins to drill
into the information structure and repeats the reading.
Otherwise, if successfully, two operations are needed to be
taken. Firstly, the original semantic information must be
replaced with a particular entity semantic information
reconstruction. Secondly, the History module needs to
"remember" this successful reading. The information flow

History dereferention
(reading) Context integration Entities pursuance

(history writing)

Semantic inform.
production

Utterance XML
interpretation

Context model
evaluation

Actions in manager's turn

ASR semantics
production

Spoken utterance
generation

Actions in users's turn

 Fig. 6. Semantic information processing diagram branched for user's and manager utterances.

Delete
TripGoal

TelNumber
MainLoop Shortcut

utterance N

entity 1 [...bindings...]

entity 2 [...bindings...]

entity K [...bindings...]

utterance N+1

entity 1 [...bindings...]

entity 2 [...bindings...]

entity L [...bindings...]

9th International PhD Workshop on Systems and Control: Young Generation Viewpoint 1. - 3. October 2008, Izola, Slovenia

diagram (fig. 6) introduces more clarity in the semantic
information processing.

The dialogue manager is prepared to deal with a "history
shifting" as well, i.e., processing utterances similar to "What
about the previous train?" (in a train timetable domain). It is
achieved perceiving the actual context as the “history of right
now" and exploiting the information in successful readings
stack for the history searching continuation.

However, although the whole semantic information
processing may feel as unwieldy and lacking flexibility (it
does not transform the given semantic information into any
internal structures), it provides enough robustness to make
possible the system utterances to undertake the same way of
dealing as the user's ones. In fact, the system prompt is
tagged which helps to convert it into a semantic information,
which is, in turn, confronted with the history reading, context
integration and finally history writing, indeed. This is present
because the system is not expected to only interpret (read)
the current context information, but instead, it may introduce
entirely new one as well (inferring from database etc.). Thus,
both the user and the system are given the possibility to
make changes in the context, which reflects the mixed
initiative and the collaborative behaviour, respectively.

IV.FUTURE WORK

As mentioned above, the manager is not completed yet,
instead, some functionalities in the core are missing. The
correction and confirmation capabilities – both should be
accomplished in the manner of disambiguation, i.e., "little"
static frames not observable from the final developer's view.
This approach seems to be clear and found an inspiration in
McGlashan's goals [14]. However, more complicated
challenge is expected to be the appropriate semantic
information design, which the ASR module should produce.
It is not clear whether one semantics would be enough for
both of them. Such information might look like:

Fig. 7. One semantics might cover both corrections and confirmations
arising during dialogue.

Last but not least, we want to augment the History module
with enabling it to accept sets of entities instead of one entity
at a time. The user would be offered the possibility to refer
to a particular entity within a set by simply describing it, for
example as "the second". However, another disambiguation
problem has to be resolved – “the second” may refer either
to an entity or a date (the second of May) [15].

Apart of missing functionalities, we also need to augment
the manager with "old" existing capabilities of its ancestor
[12]. Among them, the user's initiative restriction, achieved

using so called interactional modes, can be counted in. The
manager switches to a more restrictive mode when notifying
a dialogue flow stagnation. The mode approach found a
motivation in [8].

Currently, the manager is written in ECMA-Script (which
satisfies the demand of portability), however, in the future,
we would like to migrate to another platform. We have not
decided about a particular one yet, our favourites are Java
and Flash. We tend to the second one, not only because of its
strong multimedial presentation capabilities, but easy-to-
create user interface design as well. On the other hand, we
see the local in- and out- communication in Flash as the
biggest drawback, which Java is free of.

V.CONCLUSION

We are on a long-term development hoping that our effort
will result in a portable extendible domain-independent
(multimodal) dialogue manager. In this article, we have
presented its inner structure, context and history approaches,
which are still not completed yet, however, seem to be on a
good way to our desired goal.

REFERENCES

[1] G. E. Churcher, E. S. Atwell, C. Souter, “Dialogue Management
Systems: a Survey and Overview,” University of Leeds, School of
Computing Research Report, 1997.

[2] Y. Wilks, R. Catizone, M. Turunen, “Dialogue management: State of
the Art Papers,” COMPANIONS Consortium, 2006. Available: http://
www.companions-
project.org/downloads/Companions_SoA2_Dialogue_Management.p
df

[3] M. F. McTear, “Modelling spoken dialogues with state transition
diagrams: experiences with the CSLU toolkit,” ICSLP, 1998, paper
0545.

[4] M. F. McTear, “Using the CSLU Toolkit for practicals in spoken
dialogue technology,” MATISSE, 1999, pp. 113-116.

[5] S. Sutton, R.Cole, J. de Villers, J. Schalkwyk, P. Vermuelen, M.
Macon, et al., “Universal speech tools: The CSLU Toolkit,” in Proc.
of the ICSLP, 1998, pp. 3221-3224, Sydney, Australia.

[6] M. Melichar, Template driven dialogue management approach in the
framework of multimodal interaction; Ph.D. thesis proposal, EPFL
Lausanne, 2005.

[7] M. Araki, A. Kaga, T. Nishimoto, “Comparison of 'Go back'
implementations in VoiceXML,” in Proc. of ISCA workshop on error
handling in spoken dialogue systems, 2003, pp. 31-34.

[8] E. Levin, S. Narayanan, R. Pieraccini, K. Biatov, E. Bocchieri, G. Di
Fabbrizio, et al., "The AT&t-DARPA communicator mixed-initiative
spoken dialog system", in ICSLP, 2000, vol.2, pp. 122-125.

[9] W3C, Voice Extensible Markup Language (VoiceXML), Version 2.0,
2004. Available: http://www.w3.org/TR/voicexml20/

[10] P. Cenek, Hybrid dialogue management in frame-based dialogue
system exploiting VoiceXML, Ph.D. thesis proposal, Masaryk
University, Brno, 2004.

[11] T. H. Bui, Multimodal Dialogue Management - State of the Art, CTIT
Technical Report series No. 06-01, University of Twente (UT),
Enschede, The Netherlands, 2006.

[12] V. Matoušek, T. Nestorovič, “Hlasová komunikace s navigačním
systémem automobilu,” in Proc. of Navage, 2006, Prague.

[13] J. Zahradil, L. Müller, F. Jurčíček, “Model světa hlasového
dialogového systému,” in Proc. of Znalosti, 2003, pp. 404-409.

concept: C_REQUEST
subconcepts:

concept: C_SHORTCUT
value: "COTTAGE"

concept: C_ACCEPT
subconcepts:

9th International PhD Workshop on Systems and Control: Young Generation Viewpoint 1. - 3. October 2008, Izola, Slovenia

[14] S. McGlashan, “Towards multimodal dialogue management,” in
Proceedings of Twente Workshop on Language Technology, vol. 11,
Enschede, The Netherlands, 1996.

[15] S. McGlashan, N. Fraser, N. Gilbert, E. Bilange, P. Heisterkapm, N.
Youd, “Dialogue management for telephone information systems,” in
Proc. of the International Conference on Applied Language
Processing, Trento, Italy, 1992.

9th International PhD Workshop on Systems and Control: Young Generation Viewpoint 1. - 3. October 2008, Izola, Slovenia

	I.INTRODUCTION
	II.Grammar-Based Management
	A.Finite State-Based Approach
	B.Frame-Based Approach

	III.Dialogue Manager Approach Describtion
	A.Context property
	B.History property

	IV.Future Work
	V.Conclusion

